Complexity analysis of a linear complementarity algorithm based on a Lyapunov function
نویسنده
چکیده
We consider a path following algorithm for solving linear complementarity problems with positive semi-definite matrices. This algorithm can start from any interior solution and attain a linear rate of convergence. Moreover, if the starting solution is appropriately chosen, this algorithm achieves a complexity of O(j--mL) iterations, where m is the number of variables and L is the size of the problem encoding in binary. We present a simple complexity analysis for this algorithm, which is based on a new Lyapunov function for measuring the nearness to optimality. This Lyapunov function has itself interesting properties that can be used in a line search to accelerate convergence. We also develop an inexact line search procedure in which the line search stepsize is obtainable in a closed form. Finally, we extended this algorithm to handle directly variables which are unconstrained in sign and whose corresponding matrix is positive definite. The rate of convergence of this extended algorithm is shown to be independent of the number of such variables.
منابع مشابه
An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function
In this paper, an interior-point algorithm for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملCorrector-predictor arc-search interior-point algorithm for $P_*(kappa)$-LCP acting in a wide neighborhood of the central path
In this paper, we propose an arc-search corrector-predictor interior-point method for solving $P_*(kappa)$-linear complementarity problems. The proposed algorithm searches the optimizers along an ellipse that is an approximation of the central path. The algorithm generates a sequence of iterates in the wide neighborhood of central path introduced by Ai and Zhang. The algorithm does not de...
متن کاملA Full-NT Step Infeasible Interior-Point Algorithm for Mixed Symmetric Cone LCPs
An infeasible interior-point algorithm for mixed symmetric cone linear complementarity problems is proposed. Using the machinery of Euclidean Jordan algebras and Nesterov-Todd search direction, the convergence analysis of the algorithm is shown and proved. Moreover, we obtain a polynomial time complexity bound which matches the currently best known iteration bound for infeasible interior-point ...
متن کاملAn improved infeasible interior-point method for symmetric cone linear complementarity problem
We present an improved version of a full Nesterov-Todd step infeasible interior-point method for linear complementarityproblem over symmetric cone (Bull. Iranian Math. Soc., 40(3), 541-564, (2014)). In the earlier version, each iteration consisted of one so-called feasibility step and a few -at most three - centering steps. Here, each iteration consists of only a feasibility step. Thus, the new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Program.
دوره 53 شماره
صفحات -
تاریخ انتشار 1992